Andrew Gelman at Harris on 1/22: “Little Data: The Statistical Crisis in Science”

Little Data: How Traditional Statistical Ideas Remain Relevant in a Big-Data World

Andrew Gelman, Columbia University

Friday, January 22, 2016 –

1:00pm to 2:00pm
Harris School Room 142
Seminar

Little Data: How Traditional Statistical Ideas Remain Relevant in a Big-Data World; or, The Statistical Crisis in Science; or, Open Problems in Bayesian Data Analysis

Abstract: “Big Data” is more than a slogan; it is our modern world in which we learn by combining information from diverse sources of varying quality. But traditional statistical questions—how to generalize from sample to population, how to compare groups that differ, and whether a given data pattern can be explained by noise—continue to arise. Often a big-data study will be summarized by a little p-value. Recent developments in psychology and elsewhere make it clear that our usual statistical prescriptions, adapted as they were to a simpler world of agricultural experiments and random-sample surveys, fail badly and repeatedly in the modern world in which millions of research papers are published each year. Can Bayesian inference help us out of this mess? Maybe, but much research will be needed to get to that point.

Bio: Andrew Gelman is a professor of statistics and political science and director of the Applied Statistics Center at Columbia University. He has received the Outstanding Statistical Application award from the American Statistical Association, the award for best article published in the American Political Science Review, and the Council of Presidents of Statistical Societies award for outstanding contributions by a person under the age of 40. His books include Bayesian Data Analysis (with John Carlin, Hal Stern, David Dunson, Aki Vehtari, and Don Rubin), Teaching Statistics: A Bag of Tricks (with Deb Nolan), Data Analysis Using Regression and Multilevel/Hierarchical Models (with Jennifer Hill), Red State, Blue State, Rich State, Poor State: Why Americans Vote the Way They Do (with David Park, Boris Shor, and Jeronimo Cortina), and A Quantitative Tour of the Social Sciences (co-edited with Jeronimo Cortina).

Andrew has done research on a wide range of topics, including: why it is rational to vote; why campaign polls are so variable when elections are so predictable; why redistricting is good for democracy; reversals of death sentences; police stops in New York City, the statistical challenges of estimating small effects; the probability that your vote will be decisive; seats and votes in Congress; social network structure; arsenic in Bangladesh; radon in your basement; toxicology; medical imaging; and methods in surveys, experimental design, statistical inference, computation, and graphics.